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Abstract   

                                                                                                                                                                                                                                                                                      2π    

The present paper deals with the analytical evaluation of the definite integral ∫(1+    
                                                                                                                             0  

+ ecosφ) n – 4 [1 + (e – ė)cosφ] – n – 1 dφ, where e(u) are the eccentricities of the particle 
orbits, ė(u) ≡ de(u)/du, u ≡ ln(p), with p being the focal parameter of the corresponding 
elliptical particle orbits. The parameter n is the power in the viscosity law η = β Σ n, where 
Σ is the surface density of the accretion disc, and φ is the azimuthal angle. We have fulfilled 
computations under the following three restrictions: (i) |e(u)| < 1, (ii) |ė(u)| < 1 and (iii) 
|e(u) – ė(u)| < 1. They are physically motivated by the accepted for our considerations 
model of stationary elliptical accretion discs of Lyubarskij et al. [1]. Many particular 
cases, arising from the singular behavior of some terms for given values of e(u), ė(u), their 
difference e(u) – ė(u) and the power n, are computed in details. These calculations are 
performed in two ways: (i) by a direct substitution of the singular value into the initial 
definition of the integral, and (ii) by a limit transition to this singular value into the already 
evaluated analytical expression for the integral, obtained for the regular values of the 
corresponding variables. In the later case, the application of the L’Hospital’s rule for 
resolving of indeterminacies of the type 0/0 is very useful. Both the approaches give the 
same results in every verified case, which ensures that the transition through the singular 
value is continuous. This means that the analytical solutions for all the considered 
(singular and non-singular) cases may be combined into one single formula. Such a 
prescription of the solution of the above written integral is very suitable to the occasion, 
when this formula is applied for the verification of the linear dependence/independence of 
the coefficients, entering into the terms of the dynamical equation of the elliptical accretion 
disc.   
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1. Introduction: Some definitions and notations   
  

In the present paper we continue the investigation of the stationary 
elliptical accretion discs, according to the model, developed by Lyubarskij 
et al. [1]. For more clarity, we shall write down the definitions of the 
following seven integrals ([2] and the references therein):  
                                                               2 π       

(1)        I0-(e,ė,n) ≡ ∫(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                               0                 

                                                               2 π         

(2)        I0+(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ ,   
                                                                0        

   
                                                         2 π         

(3)        Ij(e,ė,n) ≡ ∫(cosφ)j(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ ;  j = 0, 1, 2, 3, 4.   
                                                             0            

The appearance of the above written integrals I0-(e,ė,n), I0+(e,ė,n) 
and Ij(e,ė,n), (j = 0, 1, 2, 3, 4), is evident from the previous considerations 
(and derivations) of the dynamical equation ([1], [2] and the references 
therein). For this reason, we shall not discuss now such a subject. We 
mention only that the integrals I0-(e,ė,n), I0+(e,ė,n) and Ij(e,ė,n), (j = 0, 1, 2, 
3, 4) arise, due to the angle-averaging over the azimuthal angle φ in the used 
system of non-orthogonal curvilinear coordinates (p, φ). Here p is the focal 
parameter of the elliptical orbit for each particle, which changes for the 
different parts of the accretion disc. Further in the our exposition, like in the 
paper [1], instead of p we use its logarithm u ≡ ln(p). Therefore, the 
eccentricities e of the particle orbits and their derivatives ė ≡ de/du are 
functions of the parameter/coordinate u. It is worth to note, that for circular 
orbits in the accretion flow (like the standard α-disc model [3]), the 
parameter p is simply the radius r of the corresponding particle orbit. To 
underline that u is an independent coordinate, we shall often write further 
that e = e(u) and ė = ė(u). It also remains to remark that the parameter n is 
the power into the viscosity law η = βΣ n, where η is the viscosity, Σ is the 
surface density of the accretion disc, and β is a constant. We stress that n is a 
constant throughout the disc, i.e., n does not depend on u. Of course, under 
the transition from one model of accretion flow to another one, the power n 
may change from a given value to another constant meaning.  

During the process of realization of the our program for 
simplification of the dynamical equation (derived initially by Lyubarskij et 
al. [1]; stationary case), we strike with the problem of the analytical 
evaluation of the derivatives with respect to e(u) and ė(u) of the integrals  
I0-(e,ė,n) and I0+(e,ė,n). It can be shown that the first partial derivatives  
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∂I0-(e,ė,n)/∂e, ∂I0-(e,ė,n)/∂ė, ∂I0+(e,ė,n)/∂e and ∂I0+(e,ė,n)/∂ė may be 
expressed as linear combinations of the integrals I0-(e,ė,n) and I0+(e,ė,n). 
The exact analytical forms of the coefficients of these linear dependences 
will be derived in a forthcoming paper [4]. We remind that we have 
accepted the following approach. Until now we do not know the searched 
for solution e(u) of the dynamical equation  and, consequently, the 
analytical form of its derivative ė(u) ≡ de(u)/du is also unknown. Hence, we 
are able to consider the eccentricity e(u) and its derivative ė(u) as 
“independent” variables, having, however, in mind that under 
differentiation with respect  to  u, we  must  take  into account  that  ė(u) ≡  
≡ de(u)/du. As we have mentioned earlier, ([2] and the references therein), 
we insert the following three restrictions: (i) |e(u)| < 1, (ii) |ė(u)| < 1 and (iii) 
|e(u) – ė(u)| < 1 for all values of the parameter u ≡ ln(p) (i.e., in fact, for all 
admissible values of the focal parameter p). Our current problem, which we 
intend to solve, is the question whether the integrals I0-(e,ė,n) and I0+(e,ė,n) 
are linearly independent functions with respect to their arguments e(u), ė(u) 
and n, or not ? The standard way to check this is to compute the 
corresponding Wronski determinants. The identical equality to zero of these 
determinants are necessary conditions to be fulfilled the linear relations 
between the integrals I0-(e,ė,n) and I0+(e,ė,n). If the opposite is true, then  
I0-(e,ė,n) and I0+(e,ė,n) must be linearly independent functions of e(u), ė(u) 
and n, because the pointed out necessary conditions would be violated. The 
analytical evaluations of the Wronski determinants require  computations of 
second order partial derivatives like ∂ 2I0-(e,ė,n)/∂e2, ∂ 2I0-(e,ė,n)/∂e∂ė,  
∂ 2I0-(e,ė,n)/∂ė2, ∂ 2I0+(e,ė,n)/∂e2, ∂ 2I0+(e,ė,n)/∂e∂ė and ∂ 2I0+(e,ė,n)/∂ė2. In 
view of their analytical evaluation, it is appropriate to compute preliminary 
two auxiliary integrals, defined by the equalities (4) and (5) below in the 
next chapter 2.    
 

2      
. Computation of two auxiliary integrals  

In our preparation to find explicit analytical expressions for the 
second order partial derivatives ∂2I0-(e,ė,n)/∂e2, ∂2I0-(e,ė,n)/∂e∂ė,  
∂ 2I0-(e,ė,n)/∂ė2, ∂ 2I0+(e,ė,n)/∂e2, ∂ 2I0+(e,ė,n)/∂e∂ė and ∂ 2I0+(e,ė,n)/∂ė2,  we 
encounter with the necessity to evaluate two integrals, namely:   
                                                                        2 π                    
(4)       I0,-4,+1(e,ė,n) ≡ ∫(1 + ecosφ)n – 4[1 + (e – ė)cosφ] – n – 1 dφ    
                                                                        0              
 

and     
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                                                                       2 π                
(5)       I0,-2,+3(e,ė,n) ≡ ∫(1 + ecosφ)n – 2[1 + (e – ė)cosφ] – n – 3 dφ.    
                                                                        0              

We do not give here a precise  designation of the above two 
integrals. The idea for such (unconventional) index notations is that the 
integrands of the integrals, with which we are dealing, may be represented 
as a product of three multipliers. Two of them are into the nominator: 
(cosφ)first index and (1 + ecosφ)n + second index. The third multiplier is, in fact, the 
denominator of the integrand: [1 + (e – ė)cosφ]n + third index, or, transforming it 
like a multiplier of the nominator: [ 1 + (e – ė)cosφ] – (n + third index). In 
particular, if the first index = 0, this means that the multiplier cosφ is absent 
into the nominator. For example, we would be able to write I0-(e,ė,n) as I0,-

3,+1(e,ė,n), or to write I0+(e,ė,n) as I0,-2,+2(e,ė,n). But we shall not change the 
“old” system of notations. The reason for this is that the integrals (4) and (5) 
only temporarily emerge into our computations and they must not be 
considered as frequently struck functions in the evaluated formulas. We also 
underline that by the term “analytical evaluation of the integrals I0,-4,+1(e,ė,n) 
and I0,-2,+3(e,ė,n)” we do not understand by all means that the evaluation is 
finished up to some more or less analytical expressions. Instead of that, it 
may happen to satisfy us with the more modest conclusion that I0,-4,+1(e,ė,n) 
and I0,-2,+3(e,ė,n) are linear combinations of the integrals (1) – (3). The 
establishing of such linear relations is fully sufficient for our purposes.  

 

                                                                                                                                                                                                       2 π

2.1. Evaluation of the integral I0,-4 ,+1(e,ė,n) ≡ ∫(1 + ecosφ)n – 4[1 + (e –  
                                                                                                                                                                                  0   

         –   ė)cosφ] – n – 1 dφ 
                                                                                                                                                                                                     

2.1.1. Case n ≠ 3, e(u) ≠ 0, ė(u) ≠ 0  
    

According to the definition (4), we perform the following 
transformations of the considered integral I0,-4,+1(e,ė,n):  
 
                                                                    2 π

(6)      I0,-4,+1(e,ė,n) = ∫(1 + ecosφ)n – 4(cos2φ + sin2φ)[1 + (e – ė)cosφ] – n – 1 dφ = 
                                                                      0             
                                               2 π                                                                                                                                                                                    2 π                               
            = – e – 2∫(1 + ecosφ)n – 3(1 – ecosφ)[1 + (e – ė)cosφ] – n – 1 dφ + e – 2∫(1 + ecosφ)n – 4× – 
                                                0                                                                 

                                                                                                    
                 0                     

                                                                                                                                               2 π                         
           ×[1 + (e – ė)cosφ] – n – 1 dφ – [(n – 3)e] – 1∫(sinφ)[1 + (e – ė)cosφ] – n – 1d[(1 + ecosφ)n – 3]   = 
                                                                                                                                                0                  
                                                                                                                                                 2 π                

           = e – 2I0,-4,+1(e,ė,n) – e – 2I0-(e,ė,n) + e – 2∫(1 + ecosφ)n – 2[1 + (e – ė)cosφ] – n – 1 dφ –  
                                                                                                                                                  0                
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                                       2 π                                                                                                                                                                             2 π                   
             – e – 2∫(1 + ecosφ)n – 3[1 + (e – ė)cosφ] – n – 1 dφ + [(n – 3)e2] – 1∫(1 + ecosφ)n – 3×  
                                           0                                                                                                                                                                         0                 
             ×[(1 + ecosφ) – 1][1 + (e – ė)cosφ] – n – 1 dφ +  
                                                                                                                2 π                   
             + (n + 1)(e – ė)[(n – 3)e] – 1∫(1 + ecosφ)n – 3(sin2φ)[1 + (e – ė)cosφ] – n – 2 dφ.   
                                                                                                                0              

Taking into account in the last integral that sin2φ = 1 – cos2φ, we 
arrive at the next relation:  
(7) (1 – e – 2)I0,-4,+1(e,ė,n) = – 2e – 2I0-(e,ė,n) + e – 2I0(e,ė,n) + [(n – 3)e2] – 1I0(e,ė,n) – 
                          

             – [(n – 3)e
                                                                                                                                        2 π

2] – 1I0-(e,ė,n) + (n + 1)(e – ė)[(n – 3)e] – 1∫(1 + ecosφ)n – 3× [1 + (e – ė)cosφ] – n – 2 dφ + 
                                                                                                                                                                    0         
                                                                                                         2 π                 
             + (n + 1)(e – ė)[(n – 3)e3] – 1∫(1 + ecosφ)n – 3[(1 – e2cos2φ) – 1][1 + (e – ė)cosφ] – n – 2 dφ. 
                                                                                                          0             

To proceed further, we have to compute the before the last integral 
in the above equality, namely:  
                                                               2 π                                                                      2 π

(8)       I0,-3,+2(e,ė,n) ≡ ∫(1 + ecosφ)n – 3[1 + (e – ė)cosφ] – n – 2 dφ = ∫(1 + ecosφ)n – 3[1 + (e – ė)cosφ] – n – 1 dφ –   
                                                                0                                                                                                             0

                          

             – [(e – ė)/e]∫(1 + ecosφ)
                                2 π                       

n – 3[(1 + ecosφ) – 1][1 + (e – ė)cosφ] – n – 2 dφ = 
                                                 0                
             = I0-(e,ė,n) – [(e – ė)/e]I0+(e,ė,n) + [(e – ė)/e]I0,-3,+2(e,ė,n),  
where we have used the same manner of notations as for the integral  
I0,-4,+1(e,ė,n) and I0,-2,+3(e,ė,n). Consequently, from the relation (8) we have:  
(9)         I0,-3,+2(e,ė,n) = (e/ė)I0-(e,ė,n) – [(e – ė)/ė]I0+(e,ė,n). 

We remark that the above relation is derived under the conditions 
e(u) ≠ 0 and ė(u) ≠ 0, comprised in the Case 2.1.1. Substitution of (9) into 
(7) gives:   
(10 )     (1 – e – 2)I0,-4,+1(e,ė,n) = – (2n – 5)[(n – 3)e2] – 1I0-(e,ė,n) + (n – 2)[(n – 3)e2] – 1I0(e,ė,n) + 
              + (n + 1)(e – ė)[(n – 3)ė] – 1I0-(e,ė,n) – (n + 1)(e – ė)2[(n – 3)eė] – 1I0+(e,ė,n) +  
                                                                                  π                     2 

               + (n + 1)(e – ė)[(n – 3)e3] – 1∫(1 + ecosφ)n – 2[1 + (e – ė)cosφ] – n – 2 dφ –  
                                                                                         0          

                                                                       2 π              
               – (n + 1)[(n – 3)e2] – 1∫(1 + ecosφ)n – 2{[1 + (e – ė)cosφ] – 1}[1 + (e – ė)cosφ] – n – 2 dφ –  
                                                                          0                 
               – (n + 1)(e – ė)[(n – 3)e3] – 1I0,-3,+2(e,ė,n).  

Applying again the result (9), we obtain that:   
(11)      (1 – e – 2)I0,-4,+1(e,ė,n) = (n – 3) – 1[(– 2n + 5)/e2 + (n + 1)(e – ė)/ė – (n + 1)(e – ė)(e2ė) – 1]I0-(e,ė,n) +  
             + (n – 3) – 1[– (n + 1)(e – ė)2(eė) – 1 + (n + 1)(e – ė)e – 3 +(n + 1)e – 2 + (n + 1)(e – ė)2(e3ė)]I0+(e,ė,n) + 
             + (n – 3) – 1[(n – 2)e – 2 – (n + 1)e – 2]I0(e,ė,n).  

Multiplying the above equality by [– (n – 3)e2], we obtain:  
(12)       (n – 3)(1 – e2)I0,-4,+1(e,ė,n) = [(2n – 5) + (n + 1)(1 – e2)(e – ė)ė – 1]I (e,ė,n) –  0-
                 – (n + 1)[(1 – e2)(e – ė)2(eė) – 1 + (2e – ė)/e]I0+(e,ė,n) + 3I0(e,ė,n).  
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This is the wanted representation of the integral I0,-4,+1(e,ė,n) through 
the integrals I0-(e,ė,n), I0+(e,ė,n) and I0(e,ė,n). Obviously, this dependence is 
linear and is derived under the conditions (n – 3) ≠ 0, e(u) ≠ 0 and ė(u) ≠ 0. 
No matter if e(u) – ė(u) ≠ 0 or e(u) – ė(u) = 0!         

Before to proceed further, we shall remark that we have already 
computed the analytical expressions for the integrals 
                              2 π

Ai(e,ė) ≡ ∫[1 + (e – ė)cosφ] – i dφ; ( i = 1, 2, 3, 4, 5), 
                             0

 
                           2 π                                                                                                                                                                                                               2 π

Ji(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – i dφ; ( i = 1, 2, 3, 4), Hi(e,ė) ≡ ∫(1 + ecosφ) – i × 
                 0                                                                                                                                                                                                                0

× [1 + (e – ė)cosφ] – 1 dφ; (i = 1, 2, 3, 4).Their detailed evaluations are carried 
out in paper [5].  
                                                                                                                                                                                                                                      2 π

We also have analytical estimations for the integrals Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + 
                                                                                                                                                                                                                                      0

+ ecosφ) – 1× 
                                                                                                                                                    2 π

×[1 + (e – ė)cosφ] – i dφ; (i = 0, 1, 2, 3), Ki(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – i dφ;  
                                                                                                                                                     0

(i = 1, 2, 3, 4, 5), which derivations are circumstantially described in the 
papers [6] and [7]. We shall often quote these results, in order to argue our 
further calculations. Also we shall take into use the expressions of the above 
integrals for some particular values of their arguments e(u) and ė(u), which 
are cited in the above mentioned papers [5], [6] and [7]. In fact, the later 
three works were preliminary worked out, in view of their application to the 
needs of the present paper, i.e., they are in that sense, auxiliary 
investigations.  
 

2.1.2. Case n ≠ 3, e(u) ≠ 0, ė(u) = 0   => e(u) – ė(u) ≠0 
      

According to the definitions (1) – (3), we can write for ė(u) = 0 the 
following expressions for the integrals I0(e,ė = 0,n), I0-(e,ė = 0,n), I0+(e,ė = 
= 0,n) and I0,-4,+1(e,ė = 0,n):   
                                                                            2 π        
(13) I (e,ė = 0,n) ≡ ∫(1 + ecosφ) – 3 dφ ≡ A3(e, 0) = π(2 + e2)(1 – e2) – 5/ 2, (eq. (22) 0
                                       0

                from paper [5]), 
                                                                                                                              2 π        
(14)       I0-(e,ė = 0,n) = I0+(e,ė = 0,n) ≡ ∫(1 + ecosφ) – 4 dφ ≡ A4(e, 0) = π(2 + 3e2)(1 – e2) – 7/ 2, 
                                                                                                                               0               
            (eq. (23) from paper [5]),   and  
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                                                                                        2 π        
(15)       I0,-4,+1(e,ė = 0,n) ≡ ∫(1 + ecosφ) – 5 dφ ≡ A5(e, 0) = (π/4)(8 + 24e2 + 3e4)(1 – e2) – 9/ 2, 
                                                                                         0               
            (eq. (24) from paper [5]).   

Note that the above three evaluations (13) – (15) do not depend on 
the power n in the viscosity law η = βΣ n. They are valid also for n = 3! We 
can perform  the following transformation of the relations (14):   
                                                                                                                      2 π                                                         2 π

(16)       I0-(e,ė = 0,n) = I0+(e,ė = 0,n) = ∫(1 + ecosφ) – 3 dφ – e∫(1 + ecosφ) – 4 d(sinφ) = I0(e,ė = 0,n) + 
                                                                                                                      0                                                             0

                                                                                                                                                     2 π

               + 4e2I0,-4,+1(e,ė = 0,n) – 4I0,-4,+1(e,ė = 0,n) + 4∫(1 + ecosφ)(1 – ecosφ)(1 + ecosφ) – 5 dφ = 
                                                                                                                                                               0

                          

               = I
                                                                                                                                                                                   2 π   

0(e,ė = 0,n) + 4(e2 – 1)I0,-4,+1(e,ė = 0,n) + 4I0-(e,ė = 0,n) – 4∫(1 + ecosφ) – 3 dφ + 
                                                                                                                                                                                                               0   

                                   2 π           

               + 4∫(1 + ecosφ) – 4 dφ = I0(e,ė = 0,n) + 4(e2 – 1)I0,-4,+1(e,ė = 0,n) + 4I0-(e,ė = 0,n) – 4I0(e,ė = 0,n) + 
                                     0      

               + 4I0-(e,ė = 0,n) = 8I0-(e,ė = 0,n) – 3I0(e,ė = 0,n) + 4(e2 – 1)I0,-4,+1(e,ė = 0,n).   
From this equality we are able to express the integral  I0,-4,+1(e,ė =  

= 0,n) through the integrals I0-(e,ė = 0,n) = I0+(e,ė = 0,n) and I0(e,ė = 0,n). 
Consequently, dividing by 4(1 – e2) ≠ 0, we obtain:  
(17)       I0,-4,+1(e,ė = 0,n) = [4(1 – e2)] – 1[7I0-(e,ė = 0,n) – 3I0(e,ė = 0,n)]. 

We again note that the above relation (17) is also valid for n = 3, 
because under its deduction we do not require anywhere the condition n ≠ 3 
to be fulfilled. It is evident also that (17) remains valid for e(u) = 0. In the 
later case, the equality (17) can be written as:   
(18)       2π = (1/4)[7(2π) – 3(2π)],  
which is obviously true.  

Let us rewrite the relation (13) in the following way, in order to see 
its validity under the transition ė(u) → 0:  
(19)       (n – 3)(1 – e2)I0,-4,+1(e,ė,n) = (2n – 5)I0-(e,ė,n) – (n + 1)(2e – ė)e – 1I0+(e,ė,n) +  
                + 3I0(e,ė,n) + (n + 1)(1 – e2)(e – ė)ė – 1{I0-(e,ė,n) – [(e – ė)/e]I0+(e,ė,n)}.  

We see that:  
(20)       lim{I0-(e,ė,n) – [(e – ė)/e]I0+(e,ė,n)} = I0-(e,ė = 0,n) – I0+(e,ė = 0,n) = 0,  
                ė(u) → 0          
according to the equalities (14). This result ensures that we may apply the 
L’Hospital’s theorem for computing of indeterminacies of the type 0/0. 
Because ∂ė(u)/∂ė = 1, it is enough to evaluate the derivative:   
                                                                                                                                                          2 π                
(21)       ∂{I0-(e,ė,n) – [(e – ė)/e]I0+(e,ė,n)}/∂ė = (n + 1)∫(cosφ)(1 + ecosφ)n – 3[1 + (e – ė)cosφ] – n – 2 dφ +                                                       
                                                                                                                                                            0
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                                2                          

             + e
          π                                                                                                                                             2 π

 – 1∫(1 + ecosφ)n – 2[1 + (e – ė)cosφ] – n – 2 dφ – (n + 2)[(e – ė)/e]∫(cosφ)(1 + ecosφ)n – 2× 
                                          0                                                                                                                                                                  0

                                                                                                                                                 2 π                   
             ×[1 + (e – ė)cosφ] – n – 3 dφ ――→ (n + 1)∫(cosφ)( )n – 3(1 + ecosφ) – n – 2 dφ + 1 + ecosφ
                                                                ė(u) → 0                0                            
                                         2 π                                                                                                                          2 π

             + e – 1∫(1 + ecosφ)n – 2(1 + ecosφ) – n – 2 dφ – (n + 2)∫(cosφ)(1 + ecosφ)n – 2(1 + ecosφ) – n – 3 dφ =    
                                          0                                                                                                                        0

                                        2 π                                                                                                 2 π                                                                 2 π

             – e – 1∫(1 + ecosφ)(1 + ecosφ) – 5 dφ + e – 1∫(1 + ecosφ) – 5 dφ + e – 1∫(1 + ecosφ) – 4 dφ =  
                                         0                                                                                                    0                                                                    0

                                2                 

             = e
          π                                                   

 – 1∫(1 + ecosφ) – 5 dφ = e – 1I0,-4,+1(e,ė = 0,n). 
                                          0 

       Therefore:     
(22)       lim{ė – 1{I0-(e,ė,n) – [(e – ė)/e]I0+(e,ė,n)}} = e – 1I0,-4,+1(e,ė = 0,n).     
                  ė(u) → 0         

So that, we have computed the problematic multiplier, associated 
with the transition ė(u) → 0. Now, we take this limit ė(u) → 0 for the whole 
relation (19), taking into account that I0+(e,ė = 0,n) = I0-(e,ė = 0,n) (see the 
equality (14)):  
 (23)       4(1 – e2)I0,-4,+1(e,ė = 0,n) =  7I0-(e,ė = 0,n) – 3I0(e,ė = 0,n).  

After dividing by 4(1 – e2) ≠ 0, we obtain the relation (17). 
Consequently, we may consider the equality (12) as valid also for the case 
ė(u) = 0, keeping in mind that we have to perform the limit transition ė(u) 
→ 0 with the help of the L’Hospital’s theorem for evaluation of 
uncertainties of the type 0/0. We again stress that the above results do not 
use the restriction (n – 3) ≠ 0, and may be applied to the case e(u) = 0.   
 

2.1.3. Case n ≠ 3, e(u) = 0, ė(u) ≠ 0    => e(u) – ė(u) ≠ 0   
    

Taking into account the definitions (1) – (4), we can write for the 
present case the following equalities, as concerns to the integrals I0(e =  
= 0,ė,n), I0-(e = 0,ė,n), I0+(e = 0,ė,n) and I0,-4,+1(e = 0,ė,n):   
                                                                                                                                                                                         2 π                      
(24)       I0-(e = 0,ė,n) = I0(e = 0,ė,n) = I0,-4,+1(e = 0,ė,n) ≡ ∫(1 – ėcosφ) – n – 1 dφ,  
                                                                                                                                                                                          0                  
                                                              2 π                                   
(25)       I0+(e = 0,ė,n) ≡ ∫(1 – ėcosφ) – n – 2 dφ > 0.  
                                                                                0                  

Note that the equalities (24) are valid also for n = 3 and also for  
ė(u) = 0, when I0,-4,+1(e = 0,ė = 0,n) = 2π. Let us rewrite the relation (12) in 
the following way, in order to see its validity under the limit transition  
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e(u) → 0. That is to say, we detach the multiplier, which contains into its 
denominator the factor e(u), causing the troubles under this transition  
e(u) → 0:    
(26)       (n – 3)(1 – e2)I0,-4,+1(e,ė,n) = [(2n – 5) + (n + 1)(1 – e2)(e – ė)ė – 1]I0-(e,ė,n) –  
                – (n + 1)e – 1[(1 – e2)(e – ė)2ė – 1 + 2e – ė]I0+(e,ė,n) + 3I0(e,ė,n).  

The problematic term is the coefficient of the integral I0+(e,ė,n) in 
the right-hand-side of (26), which contains into its denominator the 
multiplier e(u). We see that:  
(27)       lim[(1 – e2)(e – ė)2ė – 1 + 2e – ė] = ė2ė – 1 – ė = 0.  
                  e(u) → 0           

Further, we compute the derivative:  
(28)      ∂[(1 – e2)(e – ė)2ė – 1 + 2e – ė]/∂e = ė – 1[– 2e(e – ė)2 + 2(1 – e2)(e – ė)] + 2 ——→ 
               ——→ – 2ė/ė + 2 = 0.  
                 e(u) → 0 

We may apply again the L’Hospital’s theorem to obtain that:  
(29)       lim{e – 1[(1 – e2)(e – ė)2ė – 1 + 2e – ė]} = 0.  
                  e(u) → 0                 

This means that, if we take the limit e(u) → 0 for the both sides of 
the equation (26), the coefficient before the integral I0+(e,ė,n) will become 
equal to zero:  
(30)      (n – 3)I0,-4,+1(e = 0,ė,n) = (n – 6)I0-(e = 0,ė,n) + 3I0(e = 0,ė,n), 
or, with the reading of the first equality in (24):  
(31)       (n – 3)I0,-4,+1(e = 0,ė,n) = (n – 3)I0-(e = 0,ė,n).  

Taking into account that in the presently considered case n ≠ 3, we 
may cancel out the factor (n – 3) and to obtain the second equality in the 
relation (24). As we already mentioned above, it is also valid  if we set into 
it ė(u) = 0:  
(32)       I0,-4,+1(e = 0,ė = 0,n) = I0-(e = 0,ė = 0,n) = 2π.   

Therefore, under the limit transition e(u) → 0, the relation (12) leads 
to the right equality (31). Consequently, we are able to consider (12) to 
remain valid also for e(u) = 0, having in mind that then we must apply the 
L’Hospital’s theorem for revealing of uncertainties of the type 0/0.  
 

2.1.4. Case n ≠ 3, e(u) = 0, ė(u) = 0   => e(u) – ė(u) = 0  
            

It is easily seen that (both for n ≠ 3 and n = 3):  
(33)      I0,-4,+1(e = 0,ė = 0,n) = I0-(e = 0,ė = 0,n) = I0(e = 0,ė = 0,n) = I0+(e = 0,ė = 0,n) = 2π. 

Taking into account the correctness of the above equalities, we may 
apply the analytical representation (12) also in the present case, after 
performing the transitions  
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[e(u) → 0]∩[ė(u) → 0] or [ė(u) → 0]∩[e(u) → 0]. No matter which of the 
transitions is  taken in the first place!  
 

2.1.5.1. Case n = 3, e(u) ≠ 0, ė(u) ≠ 0, e(u) – ė(u) ≠ 0     
 

2.1.5.1.1. A direct computation of the integral I0,-4,+1(e,ė,n = 3) 
through the integral I0-(e,ė,n = 3) 

 

Substituting n = 3 into the definitions (1 ) – (4), we shall have the 
following representations for the integrals I0(e,ė,n = 3), I0-(e,ė,n = 3), 
I0+(e,ė,n = 3) and I0,-4,+1(e,ė,n = 3):  
(34)       I0-(e,ė,n = 3) = A4(e,ė) = π[2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2, 
(formula (9) from paper [5]),  
                                                                          2 π                      
(35)       I0+(e,ė,n = 3) ≡ ∫(1 + ecosφ)[1 + (e – ė)cosφ] – 5 dφ,  
                                               0                        
                                                                       2 π                      
(36)       I0(e,ė,n = 3) ≡ ∫(1 + ecosφ)[1 + (e – ė)cosφ] – 4 dφ,  
                                                              0                      
(37)       I0,-4,+1(e,ė,n = 3) = J4(e,ė) =  
               = π(– 2e4 + 6e6 – 6e8 + 2e10 – 14e5ė + 28e7ė – 14e9ė + 7e4ė2 – 49e6ė2 + 42e8ė2 + 35e5ė3 – 70e7ė3 +  
               + 2ė4 + 8e2ė4 + 70e6ė4 – 10eė5 – 14e3ė5 – 42e5ė5 + 3ė6 + 7e2ė6 +14e4ė6 – eė7 – 2e3ė7) +   
               + 2πe4ė – 4(1 – e2) – 1/ 2,   
           (see formula (47) from paper [5] for the explicit writing of the 
integral J4(e,ė) as a function of the variables e(u) and ė(u) ≡ de(u)/du). 

For the purposes, which will become evident from the consequent 
exposition of the text, we shall not use directly the above written solution 
for the integral I0,-4,+1(e,ė,n = 3) (37). Instead of that, we begin with a 
transformation of the first equality in (37), in order to introduce into the 
right-hand-side of (37) the integral I0-(e,ė,n = 3). We intend further to 
express the integrals I0+(e,ė,n = 3) and I0(e,ė,n = 3) (for which we do not 
give until now any explicit solutions in the formulas (35) and (36), 
respectively) through the later integral I0-(e,ė,n = 3).   
                                                                               2 π

(38)     I0,-4,+1(e,ė,n = 3) = ∫[(1 + ecosφ) – ecosφ](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ = I0-(e,ė,n = 3) – 
                                                                              0                         
                                                     2 π                                                                                                                                  2 π

            – [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ + [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ = 
                                                       0                                                                                                                                0 

            = I0-(e,ė,n = 3) – [e/(e – ė)]J3(e,ė) + [e/(e – ė)]I0,-4,+1(e,ė,n = 3),  
where we have used the definitions (34) for I0-(e,ė,n = 3) ≡ A4(e,ė), (37)  for  
I0,-4,+1(e,ė,n = 3) and (40) from paper [5] for the integral J3(e,ė). Therefore, 
the above equality (38) gives an expression for the considered integral  
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I0,-4,+1(e,ė,n = 3).The division  by [– ė/(e – ė)] ≠ 0 (this is ensured for the 
examined Case 2.1.5.1), gives that:  
(39)       I0,-4,+1(e,ė,n = 3) = J4(e,ė) = – [(e – ė)/ė]I0-(e,ė,n = 3) + (e/ė)J3(e,ė).  

In the earlier paper [5], we have derived several recurrent relations 
with respect to the integrals J1(e,ė), J2(e,ė) and J3(e,ė):  
(40)       J3(e,ė) = – [(e – ė)/ė]A3(e,ė) + (e/ė)J2(e,ė),  
(first equality from the relation (42) in paper [5]; for brevity’s sake, we omit 
the writing out of the explicit dependence of J3(e,ė) on e(u) and ė(u), given 
by the last equality in (42)),  
(41)       J2(e,ė) = – 2π[(e – ė)/ė][1 – (e – ė)2] – 3/ 2 + (e/ė)J1(e,ė),         (formula (33) 
from paper [5]). 

Of course, we need also of the expression (27) from paper [5], 
giving the explicit analytical solution for the “initial” integral J1(e,ė):  
(42)       J1(e,ė) = (2π/ė){e(1 – e2) – 1/ 2 – (e – ė)[1 – (e – ė)2] – 1/ 2}.  

It remains to replace, in turn, (42) into (41), and after then (41) into 
(40), in order to  eliminate from the equality (40) the integral J2(e,ė). But 
before to make into use this result, intending to resolve for the left-hand-side 
of the equation (39), we want to derive a presentation of the integral A3(e,ė) 
through the integral I0-(e,ė,n = 3). Let us compute the auxiliary integral 
A3(e,ė) in the following way:  
                                                            2 π                                                                                             2 π

(43)       A3(e,ė) = ∫[1 + (e – ė)cosφ] – 2 dφ – (e – ė)∫(cosφ)[1 + (e – ė)cosφ] – 3 dφ. 
                                                             0                                                                                                    0

Earlier we have already found that:  
                                                            2 π                           
(44)       A2(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 2 dφ = 2π[1 – (e – ė)2] – 3/ 2,   
                                                             0              
(formula (8) from paper [5]).Therefore: 
                                                                                                                                                       2 π                           
(45)       A3(e,ė) = 2π[1 – (e – ė)2] – 3/ 2 – (e – ė)∫(cosφ)[1 + (e – ė)cosφ] – 3 dφ.   
                                                                                                                                                       0            

Developing further the right-hand-side of the above relation (45), we 
have:   
 

                                                                                                                                          2 π                                  
(46)       A3(e,ė) = 2π[1 – (e – ė)2] – 3/ 2 – (e – ė)∫[1 + (e – ė)cosφ] – 3 d(sinφ) = 2π[1 – (e – ė)2] – 3/ 2 + 
                                                                                                                                           0            
                                                         2 π                                                                       2 π    

               + 3(e – ė)2∫[1 + (e – ė)cosφ] – 4 dφ + 3∫{[1 – (e – ė)2cos2φ] – 1}[1 + (e – ė)cosφ] – 4 dφ = 
                                                            0                                                                          0 

                                                                                                                                                                         2 π                   
               = 2π[1 – (e – ė)2] – 3/ 2 + 3(e – ė)2I0-(e,ė,n = 3) + 3∫[1 + (e – ė)cosφ] – 3 dφ – 
                                                                                                                                                                          0                   
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                                                     2 π

              – 3(e – ė)∫(cosφ)[1 + (e – ė)cosφ] – 3 dφ – 3I0-(e,ė,n = 3), 
                                                       0                  
where we have used the representation (34) for the integral I0-(e,ė,n = 3), 
when the power n = 3. Consequently, the equalities (46) lead to the result, 
which can be rewritten as: 
                                                                                                                                                                                                                                  2 π

(47)      – 2A (e,ė) = 2π[1 – (e – ė)3 0-
2] – 3/ 2 + 3[(e – ė)2 – 1]I (e,ė,n = 3) – 3(e – ė)∫(cosφ)× 

                                                                                                                                                                                              0

                                                                                                                                                                2 π                
               ×[1 + (e – ė)cosφ] – 3 dφ = – 4π[1 – (e – ė)2] – 3/ 2 + 2(e – ė)∫(cosφ)[1 + (e – ė)cosφ] – 3 dφ. 
                                                                                                                                                                                                  0                 

The second equality in the right-hand-side of (47) follows from (45) 
(after the multiplication of (45) by – 2). From (47) we evaluate the integral 
for which we are looking up. After dividing by – 5, we obtain that:  
                                                 2 π

(48)      – (e – ė)∫(cosφ)[1 + (e – ė)cosφ] – 3 dφ = – (6π/5)[1 – (e – ė)2] – 3/ 2 + (3/5)[1 – (e – ė)2]I0-(e,ė,n = 3). 
                                                  0              
  Substituting the above result (48) into (45), we arrive at the final 
expression for the integral A3(e,ė):  
(49)       A3(e,ė) = (4π/5)[1 – (e – ė)2] – 3/ 2 + (3/5)[1 – (e – ė)2]I0-(e,ė,n = 3). 

Now we are ready to combine the solutions (42), (41) and (49), in 
order to express the integral J3(e,ė) through the integral I0-(e,ė,n = 3) by 
means of the recurrence relation (40). At first, from (42) and (41) it may be 
evaluated that:  
(50)       J2(e,ė) = – 2π(e – ė)ė – 1[1 – (e – ė)2] – 3/ 2 – 2πe(e – ė)ė – 2[1 – (e – ė)2] – 1/ 2 + 2πe2ė – 2(1 – e2) – 1/ 2. 

Then, the relation (40) leads to the expression:  
(51)      J3(e,ė) = – (4π/5)(e – ė)ė – 1[1 – (e – ė)2] – 3/ 2 – 2πe(e – ė)ė – 2[1 – (e – ė)2] – 3/ 2 –  
             – 2πe2(e – ė)ė – 3[1 – (e – ė)2] – 1/ 2 + 2πe3ė – 3(1 – e2) – 1/ 2 – (3/5)(e – ė)[1 – (e – ė)2]ė – 1I0-(e,ė,n = 3). 

Of course, if we replace the analytical expression for the integral  
I0-(e,ė,n = 3) ≡ A4(e,ė) = π[2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2 (see the relation 
(34) in the present paper) into (51), we have to obtain the representation (42) 
from the paper [5] for the same integral J3(e,ė). We shall not perform here 
this checking.  

Finally, having available the analytical solution for the integral 
J3(e,ė), written into the form (51), we are able to replace it into the equation 
(39), eliminating thus this integral. Consequently, we conclude that under 
the conditions, accepted for the considered at present Case 2.1.5.1, the 
integral I0,-4,+1(e,ė,n = 3), which we are seeking for, takes the following form 
(here we do not use the explicit solution (34)):  
(52)       I0,-4,+1(e,ė,n = 3) = J4(e,ė) = – (4π/5)e(e – ė)ė – 2[1 – (e – ė)2] – 3/ 2 –  
                – 2πe2(e – ė)ė – 3[1 – (e – ė)2] – 3/ 2 – 2πe3(e – ė)ė – 4[1 – (e – ė)2] – 1/ 2 +  
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               + 2πe4ė – 4(1 – e2) – 1/ 2 – [(e – ė)/ė]{1 + (3/5)e[1 – (e – ė)2]ė – 1}I0-(e,ė,n = 3). 
As before, the remark given above, and concerning the replacement 

in (52) of the integral I0-(e,ė,n = 3) with its analytical solution (34), remains 
valid also for the present situation. Such a substitution of the relation (34) 
into (52) leads to the analytical expression for J4(e,ė), found in the paper [5] 
(formula (47) in this paper). Again, we shall not check this equivalence of 
the formulae (52) and (47) in paper [5], because of the brevity reasons.  
 

2.1.5.1.2. Evaluation of the integral I0,-4,+1(e,ė,n = 3) through the  
limit transition n → 3 

 

We have computed the explicit analytical expression (52) for the 
integral I0,-4,+1(e,ė,n = 3), preserving the existence of the integral I0-(e,ė,n = 
= 3), unlike the analytical solution (37). Now we ask: are we able to use the 
relation (12) (derived under the condition n ≠ 3) in the limit n → 3, to obtain 
the solution (52)? The later is computed through a direct substitution n = 3 
into the initial definition (37) for the integral I0,-4,+1(e,ė,n = 3), in accordance 
with the general definition (4) for the integral I0,-4,+1(e,ė,n). For this purpose, 
we shall try to evaluate the integrals I0(e,ė,n = 3) and  I0+(e,ė,n = 3) also by 
means of the integral I0-(e,ė,n = 3). This will enable us to check whether the 
right-hand-side of the equality (12) tends to zero, when n approaches 3, and 
then to try to apply the L’Hospital’s rule for evaluation of indeterminacies 
of the type 0/0.  

Let us write out the integrals I0(e,ė,n = 3) and I0+(e,ė,n = 3) through 
the integral I0-(e,ė,n = 3). We have the following expression (see definition 
(36)):  
                                                                     2 π

(53)      I0(e,ė,n = 3) = ∫{[1 + (e – ė)cosφ] + ėcosφ}[1 + (e – ė)cosφ] – 4 dφ = A3(e,ė) + 
                                                            0

                                         2 π                  
            + (ė/e)∫[(1 + ecosφ) – 1][1 + (e – ė)cosφ] – 4 dφ = A3(e,ė) + (ė/e)I0(e,ė,n = 3) – (ė/e)I0-(e,ė,n = 3). 
                                         0                

From here, we are in a position to find a resolution for the wanted 
integral I0(e,ė,n = 3). After multiplying by e/(e – ė) ≠ 0, we have:  
(54)       I0(e,ė,n = 3) = [e/(e – ė)]A3(e,ė) – [ė/(e – ė)]I0-(e,ė,n = 3).   

To finish the solution process, we must replace the analytical 
representation (49) of the integral A3(e,ė) through the integral I0-(e,ė,n = 3):   
(55) I0(e,ė,n = 3) = (4π/5)e(e – ė) – 1[1 – (e – ė)2] – 3/ 2 + {(3/5)e[1 – (e – ė)2](e – ė) – 1 – 
               – ė/(e – ė)} I0-(e,ė,n = 3). 

Further we compute the integral I0+(e,ė,n = 3) (see definition (35)):   
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                                                                               2 π                 
(56)       I0+(e,ė,n = 3) = ∫{[1 + (e – ė)cosφ] + ėcosφ}[1 + (e – ė)cosφ] – 5 dφ = 
                                                                                0                 
               = I0-(e,ė,n = 3) + (ė/e)I0+(e,ė,n = 3) – (ė/e)A5(e,ė),  
where we have taken into account the definitions (34), (35) and ((19), paper 
[5]) for the integrals I0-(e,ė,n = 3), I0+(e,ė,n = 3) and A5(e,ė), respectively. 
From the above derived relation (56) it immediately follows (after a 
multiplication by e/ė) an expression for the integral A5(e,ė) through the 
integrals I0-(e,ė,n = 3) and I0+(e,ė,n = 3):   
                                                           2 π                   
(57)      A5(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 5 dφ = (e/ė)I0-(e,ė,n = 3) – [(e – ė)/ė]I0+(e,ė,n = 3).  
                                     0                     

Let us perform certain transformations of the assumed by us as 
“basic” integral I0-(e,ė,n = 3), in order to link it to some other integrals. And 
thus to establish the seeked representation of I0+(e,ė,n = 3) by means of  
I0-(e,ė,n = 3). Of course, we may substitute into (57) the already known 
solution (19) from paper [5] for A5(e,ė), and express in such a way  
I0+(e,ė,n = 3) solely by means of I0-(e,ė,n = 3). But we shall do this in a 
different manner. 
                                                                     2 π 

(58)     I0-(e,ė,n = 3) = ∫{[1 + (e – ė)cosφ] – (e – ė)cosφ} [1 + (e – ė)cosφ] – 4 dφ = A3(e,ė) + 
                                                                     0

                          

             + 4(e – ė)
                          2 π                                                                                                                                                                               2 π

2∫(1 – cos2φ)[1 + (e – ė)cosφ] – 5 dφ = A3(e,ė) + 4(e – ė)2A5(e,ė) + 4∫[1 – (e – ė)cosφ]×  
                                                      0                                                                                                                                                                         0

                                                                                                                                                       2 π

             ×[1 + (e – ė)cosφ][1 + (e – ė)cosφ] – 5 dφ – 4∫[1 + (e – ė)cosφ] – 5 dφ = A3(e,ė) –   
                                                                                                                                0                            
                                                                                  2 π                                                             2 π

             – 4[1 – (e – ė)2]A (e,ė) + 4∫[1 + (e – ė)cosφ] – 4 dφ – 4∫{[1 + (e – ė)cosφ] – 1}×  5
                                                               0                                                           0

             ×[1 + (e – ė)cosφ] – 4 dφ = – 3A3(e,ė) – 4[1 – (e – ė)2]A5(e,ė) + 8I0-(e,ė,n = 3), 
where, evidently, we have used the definitions (16) and (19) from paper [5] 
for A3(e,ė) and A5(e,ė), and (34) for I0-(e,ė,n = 3) ≡ A4(e,ė). Consequently, 
we have:  
(59)      7I0-(e,ė,n = 3) = 3A3(e,ė) + 4[1 – (e – ė)2]A5(e,ė).  

At present, it remains to substitute into this equality (59) the earlier 
derived results (49) for A3(e,ė) and (57) for A5(e,ė).The division by 4[1 –  
– (e – ė)2] ≠ 0 gives:   
(60)      (7/4)[1 – (e – ė)2] – 1I0-(e,ė,n = 3) – (3π/5)[1 – (e – ė)2] – 5/ 2 – (9/20) I0-(e,ė,n = 3) –  
               – (e/ė)I0-(e,ė,n = 3) = – [(e – ė)/ė]I0+(e,ė,n = 3).  

From here, it is easy to establish the following linear relation 
between the integrals I0-(e,ė,n = 3) and I0+(e,ė,n = 3):   
(61)       I0+(e,ė,n = 3) = (3π/5)ė(e – ė) – 1[1 – (e – ė)2] – 5/ 2 +  
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              + [ė/(e – ė)]{(9/20) + (e/ė) – (7/4)[ 1 – (e – ė)2] – 1}I0-(e,ė,n = 3).  
The derived above linear dependence (61) between the integrals  

I0-(e,ė,n = 3) and I0+(e,ė,n = 3) is remarkable with the conclusion that at 
least under the conditions (which are supposed during the evaluation (61)) n 
= 3, e(u) ≠ 0, ė(u) ≠ 0 and e(u) – ė(u) ≠ 0 (i.e., Case 2.1.5.1) we already 
know the answer of the problem, which we are seeking for. Yes, the 
integrals I0-(e,ė,n = 3) and I0+(e,ė,n = 3) are linearly depended! Such a 
finding is not surprising in view of the established earlier [8] analytical 
solutions for the integrals I0-(e,ė,n) and I0+(e,ė,n) for integer powers  
n (n = – 1, 0, 1, 2, 3). If we take the results for n = 3:  
(62)       I0+(e,ė,n = 3) = (π/4)(8e + 4e3 – 12e5 – 8ė – 32 e2ė + 45e4ė + 52eė2 – 60e3ė2 –  
               – 24ė3 + 30e2ė3 – 3ė5)(e – ė) – 1[1 – (e – ė)2] – 9/ 2,                      (formula (6g) 
from paper [8]), 
(63)       I0-(e,ė,n = 3) = π[2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2,                      (formula (6h) 
from paper [8]). 

The linear relation (61) between the integrals I0-(e,ė,n = 3) and 
I0+(e,ė,n = 3) is fully consistent with the analytical expressions (62) and (63) 
for these functions of e(u), ė(u) and the (fixed) power n = 3. Similar 
conclusions about the existence of a linear dependence between I0-(e,ė,n) 
and I0+(e,ė,n) can be made also for the other (fixed) integer values of the 
power n in the viscosity law η = βΣ n: for n = – 1 (see formulas (2g) and (2h) 
from paper [8]; for n = 0 (see formulas (3g) and (3h) from paper [8]); for  
n = + 1 (see formulas (4g) and (4h) from paper [8]) and n = + 2 (see 
formulas (5g) and (5h) from paper [8]). We shall not enter here into a 
discussion about the explicit analytical form of the later pointed out linear 
functional dependences. Nor yet about their validity, as regards to the 
possible troubles for “peculiar” (i.e., vanishing some denominators of the 
expressions) values e(u) = 0, ė(u) = 0, and e(u) – ė(u) = 0. We postpone 
such a debate for later considerations. Our dominant aim now is to prepare 
to solve the problem of the existence of linear relation between the integrals 
I0-(e,ė,n) and I0+(e,ė,n) for arbitrary (physically reasonable) values of the 
power n. Of course, we remind that for every concrete accretion disc model, 
n remains a preliminary fixed quantity throughout the whole disc [1].  

Let us compute the right-hand-side of the relation (12), in order to 
check its nullification for the particular value n = 3. We shall apply the 
results (55) and (61) for the integrals I0(e,ė,n = 3) and I0+(e,ė,n = 3), 
respectively:  
(64)     [1 + 4(1 – e2)(e – ė)ė – 1]I0-(e,ė,n = 3) – 4[(1 – e2)(e – ė)2e – 1ė – 1 + (2e – ė)e – 1]I0+(e,ė,n = 3) + 
             + 3I0(e,ė,n = 3) = – (12π/5)(e2 – 2eė + ė2 – e4 + 2e3ė – e2ė2 + 2eė – ė2)e – 1(e – ė) – 1×  
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             ×[1 – (e – ė)2] – 5/ 2 + (12π/5)e(1 – e2 + 2eė – ė2)(e – ė) – 1[1 – (e – ė)2] – 5/ 2 +  
             + {(ė + 4e – 4ė – 4e3 + 4e2ė)ė – 1 – 4(e2 – e4 + 2e3ė – e2ė2)e – 1(e – ė) – 1×  
             ×{(9/20) + (e/ė) – (7/4)[1 – (e – ė)2] – 1} + (9/5)e[1 – (e – ė)2](e – ė) – 1 – 3ė(e – ė) – 1}I0-(e,ė,n = 3) = 
             = {20ė2(e – ė)[1 – (e – ė)2]}– 1{20ė(e – ė)[1 – (e – ė)2](4e – 4e3 – 3ė + 4eė) + 
             + 4ė(– e + e3 – 2e2ė + eė2){9ė[1 – (e – ė)2] + 20e[1 – (e – ė)2] – 35ė} + 36eė2(1 – e2 + 2eė – ė2)2 – 
             – 60ė3[1 – (e – ė)2]}I0-(e,ė,n = 3) = {20ė2(e – ė)[1 – (e – ė)2]} – 1×0×I0-(e,ė,n = 3) ≡ 0.  

To arrive to this zero result, we have taken into account (after some 
elementary algebra), that the multiplier of the integral I0-(e,ė,n = 3) into the 
square brackets is identically equal to zero. The same conclusion can be 
made also for the “free” term (i.e., the term without the integral I0-(e,ė,n = 
=3)) in view of the identity: (– e + e3 – 2e2ė + eė2 + e – e3 + 2e2ė – eė2) ≡ 0. 

That is why, the combination of these two equal to zero multipliers 
leads to the final nullification of the right-hand-side of the equality (12) for 
n = 3:  
(65)     lim{[(2n – 5) + (n + 1)(1 – e2)(e – ė)ė – 1]I0-(e,ė,n) – (n + 1)[(1 – e2)(e – ė)2(eė) – 1 +  
                n → 3   
            + (2e – ė)/e]I0+(e,ė,n) + 3I0(e,ė,n)} = 0.  

This evaluation (65) indicates that we are able to attempt to compute 
the integral I0,-4,+1(e,ė,n = 3) not only through a direct substitution n = 3 into 
its definition (4) (see also formula (37)), but also from the relation (12), 
using the limit transition n → 3, in order to overcome the indeterminacy of 
the type 0/0. The reasoning to perform such a duplicating evaluation of the 
integral I0,-4,+1(e,ė,n = 3) is to show the universality of (12), i.e., that it 
remains valuable even in the case n = 3, despite of the necessity to interpret 
it through the limit transition n → 3. With the invitation of the L’Hospital’s 
rule for resolving of the indeterminacies of the type 0/0. The conditions for 
applicability of this theorem are formulated in the textbooks on analysis and 
are also adduced for clearness in paper [5]. One of them (in our concrete 
task) is fulfilled by virtue of the established result (65). Other condition 
concerns the multiplier (n – 3)(1 – e2) into the left-hand-side of the equality 
(12), which, in fact, must be considered as a factor into the denominator in 
the right-hand-side of (12). If we regard (12) as a solution for the integral  
I0,-4,+1(e,ė,n = 3). Specifically:  
(66)       lim{∂[(n – 3)(1 – e2)]/∂n} = lim(1 – e2) = 1 – e2 ≠ 0,  
                  n → 3                                               n → 3              
because |e(u)| < 1. It is easily verified that the remaining conditions, for the 
applicability of the L’Hospital’s theorem, are available.  But only if, at first, 
we have already computed the limit transition n → 3 of the derivative with 
respect to n of the right-hand-side of the solution (12) for I0,-4,+1(e,ė,n). As 
we shall see now, the later evaluations are not too problemless for 
resolving. We just now start to resolve this task. We begin with the finding 
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of the derivative with respect to the power n of the right-hand-side of the 
equality (12) and then take the limit n → 3:  
(67)     ∂/∂n{[(2n – 5) + (n + 1)(1 – e2)(e – ė)ė – 1]I0-(e,ė,n) – (n + 1)[(1 – e2)(e – ė)2(eė) – 1 + 
                                                                                                                                                                                                                         2 π

             + (2e – ė)/e]I0+(e,ė,n) + 3I0(e,ė,n)}= ―→ [2 + (1 – e2)(e – ė)ė – 1]∫[1 + (e – ė)cosφ] – 4 dφ  – 
                                                                                    n → 3                                                                 0                  
                                                                                                                                              2 π

             – [(1 – e2)(e – ė)2(eė) – 1 + (2e – ė)/e]∫(1 + ecosφ)[1 + (e – ė)cosφ] – 5 dφ +  
                                                                                                                                              0                  
                                                                                                   2 π                    
             + [1 + (1 – e2)(e – ė)ė – 1]∫[1 + (e – ė)cosφ] – 4{ln{(1 + ecosφ)[1 + (e – ė)cosφ] – 1}} dφ – 
                                                                                                    0                            
                                                                                                                                                  2 π

             – 4[(1 – e2)(e – ė)2(eė) – 1 + (2e – ė)/e]∫(1 + ecosφ)[1 + (e – ė)cosφ] – 5× 
                                                                                                                                                   0

                                                                                                                                                                2 π

              ×{ln{(1 + ecosφ)[1 + (e – ė)cosφ] – 1}} dφ + 3∫(1 + ecosφ)[1 + (e – ė)cosφ] – 4× 
                                                                                                                                                                             0

             ×{ln{(1 + ecosφ)[1 + (e – ė)cosφ] – 1}} dφ ≡ C(e,ė). 
In deriving of the above equality, we have taken into account the 

definitions (1), (2) and (3) for the integrals I0-(e,ė,n), I0+(e,ė,n) and I0(e,ė,n), 
respectively. We also have used from the analysis the well-known 
differentiation formula:  
(68)       d(ax)/dx = axln(a);      a > 0,   
where the basis a > 0 does not depend on the variable x. From this rule 
immediately follows that if we have the constants a > 0, b > 0, y and z, then 
we can write:  
(69)      d/dx(ay + x/bz + x) ≡ d/dx(ay + xb – z – x) = (ay + x/bz + x)ln(a) + (ay + x/bz + x)[ln(b)]d(– x)/dx = 
              = (ay + x/bz + x)[ln(a) – ln(b)] ≡ (ay + x/bz + x)ln(a/b).  

The above rule is applied, when the differentiation with respect to 
the power n of the integrands of the integrals I0-(e,ė,n), I0+(e,ė,n) and 
I0(e,ė,n) has been performed. To continue the analytical evaluation of the 
right-hand-side of the relation (67) (which, after the transition n → 3, we 
denote briefly by C(e,ė)), we have to return to certain auxiliary results, 
derived especially for the present investigation. They are published in 
papers [6] and [7], and are dealing with the analytical computations of the 
integrals Li(e,ė) (i = 0, 1, 2, 3) and Ki(e,ė) (i = 1, 2, 3, 4, 5), (see their 
definitions (17) and (18), respectively). We do not rewrite here these 
solutions, and also the expressions for some of the particular values for the 
first and second arguments of Ki(e,ė) (i = 1, 2, 3, 4, 5). Namely, Ki(e,0) (i = 
= 1, 2, 3, 4, 5) and Ki(e – ė,0) (i = 3, 4, 5) [7]. We only refer to these (to 
some extend) long formulas in paper [7], in order to avoid the unnecessary 
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overload of the our exposition. With the above remarks, we write from (67) 
that:  
(70)      C(e,ė) = (e – e3 + ė + e2ė)ė – 1A4(e,ė) + (– e + e3 – 2e2ė + eė2)ė – 1A5(e,ė) + 
              + {e/[ė(e – ė)]}(– e + e3 – 2e2ė + eė2)A4(e,ė) – {e/[ė(e – ė)]}(– e + e3 – 2e2ė + eė2)A5(e,ė) + 
              + (4e – 4e3 – 3ė + 4e2ė)ė – 1K4(e,ė) – (4e – 4e3 – 3ė + 4e2ė)ė – 1K4(e,ė) + 
              + (– 4e + 4e3 – 8e2ė + 4eė2)ė – 1K5(e,ė) +  

+ {e/[ė(e – ė)]}(– 4e + 4e3 – 8e2ė + 4eė2)K4(e,ė) – {e/[ė(e – ė)]}(– 4e + 4e3 – 8e2ė +      
+4eė2)K5(e,ė) – 

              – (– 4e + 4e3 – 8e2ė + 4eė2)ė – 1K5(e – ė,0) –  
              – {e/[ė(e – ė)]}(– 4e + 4e3 – 8e2ė + 4eė2)K4(e – ė,0) +  
              + {e/[ė(e – ė)]}(– 4e + 4e3 – 8e2ė + 4eė2)K5(e – ė,0) + 3K4(e,ė) + 3[e/(e – ė)]K3(e,ė) –  
              – 3[e/(e – ė)]K4(e,ė) – 3K4(e – ė,0) – 3[e/(e – ė)]K3(e – ė,0) + 3[e/(e – ė)]K (e – ė,0) = 4
              = [e/(e – ė)][1 – (e – ė)2]A5(e,ė) – [ė/(e – ė)]A4(e,ė) + 4[e/(e – ė)][1 – (e – ė)2]K5(e,ė) –  
              – 7[e/(e – ė)]K4(e,ė) + 3[e/(e – ė)]K3(e,ė) – 4[e/(e – ė)][1 – (e – ė)2]K5(e – ė,0) + 
               + 7[e/(e – ė)]K4(e – ė,0) – 3[e/(e – ė)]K3(e – ė,0). 

At present, we are in a position to substitute into the last equality of 
the above relation the corresponding analytical evaluations for the integrals 
A4(e,ė) (formula (9) from paper [5]), A5(e,ė) (formula (19) from paper [5]), 
K3(e,ė) (formula (18) from paper [7]), K4(e,ė) (formula (20) from paper 
[7]), K5(e,ė) (formula (22) from paper [7]), K3(e – ė,0) (formula (31) from 
paper [7] with the replacement e → e – ė), K4(e – ė,0) (formula (34) from 
paper [7] with the replacement e → e – ė) and K5(e – ė,0) (formula (36) 
from paper [7] with the replacement e → e – ė). Therefore:   
(71)    C(e,ė) = (e – ė) – 1{(π/4)e[1 – (e – ė)2][8 + 24(e – ė)2 + 3(e – ė)4][1 – (e – ė)2] – 9/ 2 – 
             – πė[2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2 + 4e(π/4)[1 – (e – ė)2](8 + 24e2 + 3e4 – 48eė –  
             – 12e3ė + 24ė2 + 18e2ė2 – 12eė3 + 3ė4)[1 – (e – ė)2] – 9/ 2lnZ(e – ė,0) + (4π/6)e[1 – (e – ė)2]× 
             ×(– 3e4 + 9e6 – 9e8 + 3e10 – 4e3ė – 10e5ė + 32e7ė – 18e9ė – 6e2ė2 – 4e4ė2 – 35e6ė2 + 45e8ė2 – 
             – 12eė3 – 16e3ė3 – 60e7ė3 + 39e2ė4 + 25e4ė4 + 45e6ė4 – 18eė5 – 16e3ė5 – 18e5ė5 + 3e2ė6 + 3e4ė6)× 
             ×ė – 4[1 – (e – ė)2] – 7/ 2 + (4π/12)e[1 – (e – ė)2](6e4 – 24e6 + 36e8 – 24e10 + 6e12 + 8e3ė + 18e5ė –  
             – 102e7ė + 118e9ė – 42e11ė + 12e2ė2 + e4ė2 + 88e6ė2 – 227e8ė2 + 126e10ė2 + 24eė3 + 16e3ė3  –  
             – 35e5ė3 + 205e7ė3 – 210e9ė3 – 50ė4 – 138e2ė4 + 48e4ė4 – 70e6ė4 + 210e8ė4 + 182eė5 – 40e3ė5 –  
             – 16e5ė5 – 126e7ė5 – 55ė6 – 4e2ė6 + 17e4ė6 + 42e6ė6 + 9eė7 – 3e3ė7 – 6e5ė7)ė – 4[1 – (e – ė)2] – 4×  
             ×(1 – e2) – 1/ 2 + (20π/12)e[1 – (e – ė)2](10 + 11e2 – 22eė + 11ė2)[1 – (e – ė)2] – 4 – 
             – 7πe(2 + 3e2 – 6eė + 3ė2)[1 – (e – ė)2] – 7/ 2lnZ(e – ė,0) – (7π/3)e(– 2e3 + 4e5 – 2e7 – 3e2ė – 5e4ė + 
             + 8e6ė – 6eė2 – 5e3ė2 – 12e5ė2 – 2ė3 + 9e2ė3 + 8e4ė3 – 3eė4 – 2e3ė4)ė – 3[1 – (e – ė)2] – 5/ 2 – 
             – (7π/3)e(2e3 – 6e5 + 6e7 – 2e9 + 3e2ė + 4e4ė – 17e6ė + 10e8ė + 6eė2+ e3ė2 + 13e5ė2 – 20e7ė2 – 11ė3 – 
             – 12e2ė3 + 3e4ė3 + 20e6ė3 + 17eė4 – 7e3ė4 – 10e5ė4 – 4ė5 + 2e2ė5 + 2e4ė5)ė – 3[1 – (e – ė)2] – 3×  
             × (1 – e2) – 1/ 2 – (14π/3)e[1 – (e – ė)2] – 5/ 2 – (7π/3)e(11 + 4e2 – 8eė + 4ė2)[1 – (e – ė)2] – 3 + 
             + 3πe(2 + e2 – 2eė + ė2)[1 – (e – ė)2] – 5/ 2lnZ(e – ė,0) + 3πe(– e2 + 2e4 – e6 – 2eė – 2e3ė + 4e5ė – 
             – 2e2ė2  – 6e4ė2 + 2eė3 + 4e3ė3 – e2ė4)ė – 2[1 – (e – ė)2] – 5/ 2 +  
             + 3πe(e2 – 2e4 + e6 + 2eė + e3ė – 3e5ė – 3ė2 + 3e4ė2 + eė3 – e3ė3)ė – 2[1 – (e – ė)2] – 2(1 – e2) – 1/ 2 +   
             + 9πe[1 – (e – ė)2] – 2 – (4π/48)e[1 – (e – ė)2][(96 + 288(e – ė)2 + 36(e – ė)4][1 – (e – ė)2] – 9/ 2×  
             ×lnZ(e – ė,0) – (4π/48)e[1 – (e – ė)2]{– 200 – 312(e – ė)2 – 21(e – ė)4 + [200 + 220(e – ė)2]×  
             ×[1 – (e – ė)2]1/ 2}[1 – (e – ė)2] – 9/ 2 + (7π/6)e[12 + 18(e – ė)2][1 – (e – ė)2] – 7/ 2lnZ(e – ė,0) + 
             + (7π/6)e{– 22 – 15(e – ė)2 + [22 + 8(e – ė)2][1 – (e – ė)2]1/ 2}[1 – (e – ė)2] – 7/ 2 –  
             – (3π/2)e[4 + 2(e – ė)2][1 – (e – ė)2] – 5/ 2lnZ(e – ė,0) – (3π/2)e{– 6 – (e – ė)2 + 6[1 – (e – ė)2]1/ 2}× 
             ×[1 – (e – ė)2] – 5/ 2}.   
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In the above equality we have used the notation Z(e,ė), introduced in 
the paper [7] (formula (23) in paper [7]). If we accept for the first argument 
of this function the difference e(u) – ė(u), and a constant zero value for the 
second argument, it is easy to see (formula (24) from paper [7] with the 
replacement e → e – ė) that:  

 

(72)       Z(e – ė,0) = 2{2 – 3(e – ė)2  + (e – ė)4 – 2[1 – (e – ė)2]3/ 2}(e – ė) – 2{1 – [1 – (e – ė)2]1/ 2}– 1. 
 

The long expression (71) for the function C(e,ė) may be simplified, 
if we notice that the coefficient, multiplying the sum of the six terms with 
the logarithmic function lnZ(e – ė,0), is exactly equal to zero. Even more: 
the coupling of such terms by triplets with common coefficients shows that 
the later are also with zero values. Let us prove this statement. Combining in 
(71) the 3rd, the 7th and the 12th terms together, and also the 16th, the 18th 
the 20th terms by triplets, we obtain also a zero sum.  

Rejecting the above mentioned six terms (because of their zero 
contribution), we further simplify the expression for C(e,ė), which already 
does not contain any logarithmic functions. After some algebraic 
transformations of the remaining 15 terms, we arrive at the final conclusion:  

 
(73)       lim{∂/∂n{[(2n – 5) + (n + 1)(1 – e2)(e – ė)ė – 1]I0-(e,ė,n) – (n + 1)[(1 – e2)(e – ė)2(eė) – 1 +  
                   n → 3              
             + (2e – ė)/e]I0+(e,ė,n) + 3I0(e,ė,n)}} ≡ C(e,ė) = π(1 – e2)(e – ė)(– 2e3 + 6e5 – 6e7 + 2e9 – 2e2ė –  
             – 8e4ė + 22e6ė – 12e8ė – 2eė2 – e3ė2 – 27e5ė2 + 30e7ė2 – 2ė3 – e2ė3 + 8e4ė3 – 40e6ė3 + 7eė4 + 8e3ė4 + 
             + 30e5ė4 – 3ė5 – 6e2ė5 – 12e4ė5 + eė6 + 2e3ė6)ė – 4[1 – (e – ė)2] – 7/ 2 + 2πe4(1 – e2)ė – 4(1 – e2) – 1/ 2. 

 
Taking into account the transition (66), we have from the relation 

(12) (after a division by (1 – e2) ≠ 0), that:  
                                                                                         2 π                              
(74)       limI0,-4,+1(e,ė,n) ≡ lim{∫(1 + ecosφ) n – 4[1 + (e – ė)cosφ] – n – 1 dφ} = π(e – ė)(– 2e3 + 6e5 – 6e7 +  
                  n → 3                   n → 3 0              
               + 2e9 – 2e2ė – 8e4ė + 22e6ė – 12e8ė – 2eė2 – e3ė2 – 27e5ė2 + 30e7ė2 – 2ė3 – e2ė3 + 8e4ė3 – 40e6ė3 +  
              + 7eė4 + 8e3ė4 + 30e5ė4 – 3ė5 – 6e2ė5 – 12e4ė5 + eė6 + 2e3ė6)ė – 4[1 – (e – ė)2] – 7/ 2 +  
                                             

              + 2πe
                                     2 π

4ė – 4(1 – e2) – 1/ 2 = ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ ≡ I0,-4,+1(e,ė,n = 3). 
                                                                                                0

The above expression coincides with the expression for the integral 
I0,-4,+1(e,ė,n = 3) ≡ J4(e,ė) (formula (37), which is, in fact, the result (47), 
derived in the paper [5]). This means that the transition n → 3 in the 
solution (13) is continuous. And it is possible to use this linear relation even 
for n = 3, having in mind that we have to apply, in this connection, the 
L’Hospital’s rule for resolving of indeterminacies of the type 0/0.  
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2.1.5.2. Case n = 3, e(u) ≠ 0, ė(u) = e(u) ≠ 0   => e(u) – ė(u) = 0 
 

A direct computation from the definition (4) gives that:  
                                                                                                     2 π                       
(75)       I0,-4,+1(e,ė = e,n = 3) ≡ ∫(1 + ecosφ) – 1 dφ = 2π(1 – e2) – 1/ 2 = A1(e,0),   
                                                                                                     0                   
            (see, for example, formula (20) from paper [5]).  
This result follows also from the above just derived expression (74), if we 
substitute into it ė(u) = e(u). It is also in agreement with the relation (12), 
because (74) is derived as a consequence from (12) in the limit n → 3.     
 

2.1.6. Case n = 3, e(u) ≠ 0, ė(u) = 0   => e(u) – ė(u) ≠ 0 
     

A direct computation from the definition (4) gives that:    
(76)      I0,-4,+1(e,ė = e,n = 3) = A5(e,0) = (π/4)(8 + 24e2 + 3e4)(1 – e2) – 9/ 2,   
            (formula (24) from paper [5]).  

In deriving of the above expression (76), we have at first taken the 
limit ė(u) → 0, and after then we have performed the transition n → 0. The 
solutions (75) and (76) coincide with the solutions A1(e,0) and A5(e,0), 
respectively, and we note that the laters do not depend on the power n in the 
viscosity law η = βΣ n. We now shall show that we may change the order of 
the transitions: at first we may take into (4) the transition n → 3 and after 
that substitute ė(u) = 0. The final result will be the same as (76). In the 
expression (74) the transition n → 3 is already performed and it remains to 
evaluate it in the limit ė(u) → 0. Performing into the first term the 
multiplication by (e – ė) ≠ 0 (in the our Case 2.1.6 e(u) – ė(u) ≠ 0 !) and 
reducing to a common denominator the two terms of the solution (74), we 
want, in fact, to evaluate the limit:  
(78)       π(1 – e2) – 1/ 2lim{{(– 2e4 + 6e6 – 6e8 + 2e10 – 14e5ė + 28e7ė – 14e9ė + 7e4ė2 – 49e6ė2 + 42e8ė2 + 
                                        ė(u) → 0            
               + 35e5ė3 – 70e7ė3 + 2ė4 + 8e2ė4 + 70e6ė4 – 10eė5 – 14e3ė5 – 42e5ė5 + 3ė6 + 7e2ė6 + 14e4ė6 – eė7 –  
               – 2e3ė7)(1 – e2)1/ 2 + 2e4[1 – (e – ė)2]7/ 2}ė – 4[1 – (e – ė)2] – 7/ 2}. 
  To apply the L’Hospital’s rule for evaluating of indeterminasies of 
the type 0/0, we must compute the derivatives with respect to ė(u) from the 
denominator and the dominator of the above expression (78).  

It is easily checked that the other conditions for the application of 
the L’Hospital’s rule (see paper [5]) are also fulfilled. It turns out, that this 
rule has to be used four times, because only after the fourth differentiation 
with respect to ė(u) of the denominator  
ė4[1 – (e – ė)2]7/ 2 into (78) ensures non-zero value for ė(u) = 0. We here 
temporarily neglect  the multiplier π(1 – e2) – 1/ 2 into the left-hand-side of 
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the equality (78), because it does not make sense under the limit transition 
ė(u) → 0. Therefore, we successively compute the following derivatives 
with respect to ė(u) under the transition ė(u) → 0:   
(79)       lim{∂/∂ė{ė4[1 – (e – ė)2]7/ 2}} = 0.   
            ė(u) → 0 
(80)       lim{∂/∂ė{4ė3[1 – (e – ė)2]7/ 2 + 7ė4(e – ė)[1 – (e – ė)2]5/ 2}} = 0.  
                   ė(u) → 0 
(81)       lim{∂/∂ė{12ė2[1 – (e – ė)2]7/ 2 + 56ė3(e – ė)[1 – (e – ė)2]5/ 2 – 7ė4[1 – (e – ė)2]5/ 2 + 
                  ė(u) → 0            
             + 35ė4(e – ė)2[1 – (e – ė)2]3/ 2}} = 0.  

Finally, we compute analytically that:  
(82)      lim{∂/∂ė{24ė[1 – (e – ė)2]7/ 2 + 252ė2(e – ė)[1 – (e – ė)2]5/ 2 – 84ė3[1 – (e – ė)2]5/ 2 +  
                  ė(u) → 0            
             + 420ė3(e – ė)2[1 – (e – ė)2]3/ 2 – 105ė4(e – ė)[1 – (e – ė)2]3/ 2 + 105ė4(e – ė)3[1 – (e – ė)2]1/ 2}} =  
             = 24(1 – e2)7/ 2.  

 Therefore, we have to differentiate with respect to ė(u) four times, 
until we arrive at an expression in the denominator, which tends to non-zero 
value, when ė(u) → 0.    

Let us now compute the limits of the derivatives of the nominator of 
the expression (78), when ė(u) approaches zero: 
(83)      lim{∂/∂ė{(– 2e4 + 6e6 – 6e8 + 2e10 – 14e5ė + 28e7ė – 14e9ė + 7e4ė2 – 49e6ė2 + 42e8ė2 + 35e5ė3 –   
                 ė(u) → 0            
              – 70e7ė3 + 2ė4 + 8e2ė4 + 70e6ė4 – 10eė5 – 14e3ė5 – 42e5ė5 + 3ė6 + 7e2ė6 + 14e4ė6 – eė7 – 2e3ė7)×  
             ×(1 – e2)1/ 2 + 2e4[1 – (e – ė)2]7/ 2}} = 0,  
(84)      lim{∂/∂ė{(– 14e5 + 28e7 – 14e9 + 14e4ė – 98e6ė + 84e8ė + 105e5ė2 – 210e7ė2 + …)×(1 – e2)1/ 2 + 
                 ė(u) → 0             
             + (14e5 – 28e7 + 14e9 – 14e4ė + 84e6ė – 70e8ė – 84e5ė2 + 140e7ė2 + …)[1 – (e – ė)2]1/ 2}} = 0.  
(85)      lim{∂/∂ė{(14e4 – 98e6 + 84e8 + 210e5ė – 420e7ė +…)(1 – e2)1/ 2 + (14e4 + 98e6 – 84e8 –   
                 ė(u) → 0          
             – 196e5ė +…)[1 – (e – ė)2]1/ 2}} = 0,  
(86)      lim{∂/∂ė{(210e5 – 420e7 + 48ė + 192e2ė + 1680e6ė –…)(1 – e2)1/ 2 + (– 196e5 + 336e7 + 196e4ė –  
                 ė(u) → 0 
             – 1008e6ė +…)[1 – (e – ė)2]1/ 2 + (– 14e5 + 98e7 – 84e9 + 14e4ė – 294e6ė + 420e8ė +…)×  
             ×[1 – (e – ė)2] – 1/ 2}}  = 6(8 + 24e2 + 3e4)(1 – e2) – 1/ 2.    

This is the fourth differentiation of the nominator of the expression 
(78). Consequently, the L’Hospital’s rule for resolving of indeterminacies of 
the type 0/0, enables us to compute the two-limits transition:  
(87)      lim   [  lim I0,-4,+1(e,ė,n)] = lim I0,-4,+1(e,ė,n = 3)] = I0,-4,+1(e,ė = 0,n = 3)] =  
                 ė(u) → 0 n → 3                           ė(u) → 0        
             = (6π/24)(8 + 24e2 + 3e4)(1 – e2) – 1(1 – e2) – 7/ 2 = (π/4)(8 + 24e2 + 3e4)(1 – e2) –  9/ 2,  
where the above solution (87) follows from the equalities (82) and (86). And 
also we have recovered the multiplier π(1 – e2) – 1/ 2, according to the 
expression (78). The evaluation (87) coincides with the right-hand-side of 
the solution (76) and implies that no matter which limit transition ė(u) → 0 
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or n → 3 will be taken first. That is to say, the two-limits transitions  
lim        lim     and    lim     lim      are  equivalent  in  the  considered  by  us  
ė(u) → 0   n → 3           n → 3   ė(u) → 0 
situations. This also confirms again, that the relation (12) may be used for 
evaluation of the integral I0,-4,+1(e,ė,n) in the cases when n = 3 and/or ė(u) = 
= 0 through the application of the L’Hospital’s rule for computing of 
indeterminacies of the type 0/0.  
 

2.1.7. Case n = 3, e(u) = 0, ė(u) ≠ 0   => e(u) – ė(u) ≠ 0  
 

A direct computation from the definition (4) gives:  
                                                                                                   2 π      

(88)      I0,-4,+1(e = 0,ė,n = 3) ≡ ∫(1 – ėcosφ) – 4 dφ = A4(– ė,0) = π(2 + 3ė2)(1 – ė2) – 7/ 2,  
                                                                                                    0                
            (formula (23) from paper [5] with the replacement e(u) → – ė(u)).  

We may also evaluate this integral by another way, using the 
solution (74), where the transition n → 3 is already performed. And where 
we are allowed directly to set e(u) = 0 (simultaneously preserving ė(u) ≠ 0), 
because e(u) does not take place as a factor into the denominators. The 
result is:  
(89)      lim   [  lim I0,-4,+1(e,ė,n)] = – πė(– 2ė3 – 3ė5)ė – 4(1 – ė2) – 7/ 2 = π(2 + 3ė2)( 1 – ė2) – 7/ 2, 
                e(u) → 0 n → 3 
which coincides with the above evaluation (88). Consequently, we again 
arrive at the conclusion that no matter which of the transitions n → 3 or  
e(u) → 0 must be realized at first. The expression (12) also may be useful 
(i.e., to make sense) for the analytical evaluation of the integral I0,-4,+1(e,ė,n) 
for n = 3 and/or e(u) = 0, if the corresponding two-limits n → 3 and e(u) → 
→ 0 are performed.  
 

2.1.8. Case n = 3, e(u) = ė(u) = 0   => e(u) – ė(u) = 0   
 

Obviously, in this most simple case I0,-4,+1(e = 0,ė = 0,n = 3) = 2π. 
The same result follows from the expressions (76) and (88), if we take  
e(u) → 0, or ė(u) → 0, respectively. 

All the above considerations, made in the Cases 2.1.1 −  2.1.8, 
support the statement that the linear relation (12) may be used also in the 
situations when some or all of the quantities e(u), ė(u) and n – 3 are equal to 
zero. It is enough only to apply the L’Hospital’s rule (theorem) for resolving 
of indeterminacies of the type 0/0. It seems out, that there is no matter what 
must be the order of performing of the needed transitions e(u) → 0,  
ė(u) → 0 and n → 3.  
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3. Conclusions   
 

In the present paper we have resolved analytically the integral I0,-

4,+1(e,ė,n), given by the definition (4). A similar approach for an analytical 
evaluation of the other integral I0,-2,+3(e,ė,n), described by the definition (5), 
will be applied in a forthcoming paper [9]. Such calculations split into many 
particular cases. This situation is caused by the vanishing of the 
denominators of some terms in the final or/and intermediate results for 
certain values of the eccentricity e(u), its derivative ė(u) and the power n. It 
is remarkable that all these solutions can be expressed by means of a single 
common formula. The essential point is that such divergences may be 
overcome with the help of the L’Hospital’s rule for resolving of 
indeterminacies of the type 0/0. For this reason, the application of the 
solutions into the subsequent calculations is simplified to some extent, 
because there is not already need to consider every case in a separate way. 
Of course, having in mind the corresponding limit transitions, when we have 
dealing with the singular points. The generalized in such a manner solution 
for the integral I0,-4,+1(e,ė,n) is given by the formula (12). The corresponding 
to the integral I0,-2,+3(e,ė,n) solution is derived in paper [9].  

The basic motivation to establish the analytical solutions of the 
integrals I0,-4,+1(e,ė,n) (definition (4)) and I0,-2,+3(e,ė,n) (definition (5)) is to 
give the answer of the question whether the integrals I0-(e,ė,n) (definition 
(1)) and I0+(e,ė,n) (definition (2)) are linearly dependent functions of e(u), 
ė(u) and n or not. The standard approach to resolve this problem is to 
compute the corresponding Wronski determinant and to evaluate its 
equalization/non-equalization to zero value. In the process of realization of 
this procedure, there arises the necessity of knowledge of the analytical 
solutions of these integrals I0,-4,+1(e,ė,n) and I0,-2,+3(e,ė,n). It is worth to note, 
that in the present investigation we already encounter with the property that 
for integer n (n = – 1, 0, 1, 2, 3) the integrals I0-(e,ė,n) and I0+(e,ė,n) are 
linearly dependent functions. In particular, formula (61) clearly 
demonstrates such a linear relation for n = 3. Therefore, we have a hint to 
expect also the existence of linear dependencies between I0-(e,ė,n) and 
I0+(e,ė,n) in the general case, including the non-integer values of the power 
n. Such an expectation follows from the property that the viscosity law  
η = βΣ n does not impose or require any physically motivated separations of 
the powers n (for different families of models of Lyubarskij et al. [1]) into 
integer and non-integer values. That is to say, between models with (fixed) 
integer n and models  with (fixed) non-integer n.    
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АНАЛИТИЧНО ПРЕСМЯТАНЕ НА ДВА ИНТЕГРАЛА, 
ВЪЗНИКВАЩИ В ТЕОРИЯТА НА ЕЛИПТИЧНИТЕ АКРЕЦИОННИ 

ДИСКОВЕ. IV. РЕШАВАНЕ НА ЕДИН ИНТЕГРАЛ, 
ОБЕЗПЕЧАВАЩ ОЦЕНЯВАНЕТО НА ПРОИЗВОДНИТЕ, 

ВЛИЗАЩИ В ДЕТЕРМИНАНТАТА НА ВРОНСКИ 
 

Д. Димитров 
 

Резюме 
Настоящата статия се занимава с аналитичното пресмятане на 

определения  интеграл                                         
  2π
  ∫(1 + ecosφ)n – 4[1 + (e – ė)cosφ] – n – 1 dφ, където e(u) са  
   0  

ексцентрицитетите на орбитите на частиците, ė(u) ≡ de(u)/du, u ≡ ln(p), 
като p е фокалният параметър на съответните елиптични орбити на 
частиците. Параметърът n е степента в закона за вискозитета η = βΣ n, 
където Σ е повърхностната плътност на акреционния диск и φ е 
азимуталният ъгъл. Ние сме извършили изчисленията при следните три 
ограничения: (i) |e(u)| < 1, (ii) |ė(u)| < 1 и (iii) |e(u) – ė(u)| < 1. Те са 
физически мотивирани от възприетия за нашите разглеждания модел на 
стационарни елиптични акреционни дискове на Любарски и др. [1]. 
Голям брой частни случаи, възникващи поради сингулярното поведение 
на някои членове за дадени значения на e(u), ė(u), тяхната разлика e(u) –  
– ė(u) и степенния показател n, са детайлно изчислени. Тези пресмятания 
са извършени по два способа: (i) чрез директно полагане на сингулярното 
значение в първоначалната дефиниция на интиграла, и (ii) чрез граничен 
преход към това сингулярно значение във вече оценения аналитичен израз 
за интеграла, получен за регулярни стойности на съответните 
променливи. В последния случай е твърде полезно прилагането на 
правилото на Льопитал за решаването на неопределености от вида 0/0. 
Двата подхода дават едни и същи резултати във всеки проверяван случай, 
което осигурява щото преходът през сингулярното значение да е 
непрекъснат. Това означава, че аналитичните решения за всички 
(сингулярни и несингулярни) случаи могат да бъдат комбинирани в една 
единствена формула. Такова едно описание на решението на 
горенаписания интеграл, е твърде удобно за случая, когато тази формула 
се прилага за проверяването на линейната зависимост/независимост на 
коефициентите, влизащи в членовете на динамичното уравнение на 
елиптичния акреционен диск.   
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